Break ice or don't login twice: FreeIPA and OAuth 2.0

Alexander Bokovoy // Francisco Triviño García

Red Hat

- · Identity management solution:
 - provides centralized infrastructure to manage POSIX identities across a fleet of Linux machines
 - combines 389-ds LDAP server, MIT Kerberos, BIND DNS server, SSSD, Samba, and Python-based management tools
 - often seen as 'Active Directory for Linux' but this is not exactly correct comparison
 - Depends on a lot of OS components working together, can be used as a canary to detect breakage in many packages
 - · Used as a core of Fedora Accounts system

FreeIPA at an operating system level

- Identity and access information
 - user and group POSIX information for Linux environments through SSSD
 - user authorization through SSSD host-based access controls
- Authentication
 - · Centralized Kerberos authentication with different authentication methods
 - Single sign-on to system services
 - Centralized management of SSH public keys

FreeIPA as a backend provider

- Identity provider integration:
 - · Direct identity backend to a web service with LDAP 'driver'
 - SSSD as an identity backend to a web service
 - Ipsilon and Keycloak
 - Apache module mod_lookup_identity
 - NGINX module nginx_http_lookup_identity_module
- Authentication integration:
 - LDAP BIND
 - SPNEGO/Kerberos
 - · Apache module mod_auth_gssapi
 - PAM authentication via SSSD PAM module
 - · Apache module mod_authnz_pam
 - NGINX module nginx_http_authnz_pam_module

Disadvantages

- Applications authors haven't really mastered LDAP and Kerberos
 - some frameworks do allow for extensibility but documentation isn't great
- Typical integration approaches struggle to scale
 - a single LDAP server in a configuration
 - lack of support for more than 'username+password' methods
 - Java-based frameworks have outdated Kerberos support, aren't aware about features added since 2010
 - Java-based frameworks struggle to integrate with UNIX domain sockets
 - Micro-services often cannot be assumed to use system-wide domain enrollment details
- · Web services moved on to OAuth 2.0 authorization framework
 - OAuth 2.0 methods rely on browser redirects

OAuth 2.0 authorization framework

- Web services moved on to OAuth 2.0 authorization framework
 - Identity Provider (IdP) handles authentication and authorization, one place to focus on instead of every single app
 - Applications rely on IdP-issued grant to operate
- Web services map OAuth 2.0 subjects, not system-level 'users', it gives a bit of flexibility to map 'POSIX' users

FreeIPA as a consumer of external resources

Consume external identities

Trust to Active Directory

Consume external authentication

- FreeIPA already allows to authenticate against an external source with RADIUS protocol
 - exposed through a Kerberos pre-authentication method
 - · user details stored in FreeIPA, authentication handled by external source
- RADIUS support has some limitations:
 - single RADIUS server end-point per each user
 - only supports 'PIN + token' opaque scheme
 - cannot support conversation protocols

OAuth 2.0 authorization and access to system-level resources

OAuth 2.0 moves authentication step to IdP

- Authentication is not visible to OAuth 2.0 clients, they ask IdP for a grant to access resources instead
 - IdP authenticates the user, if needed, and asks the user to authorize the request
 - All this implies use of a browser and HTTP-based redirects
 - Hard to integrate without browsers being available
 - OAuth 2.0 has few authorization flows to address different use cases; they all still need the browser to be present somewhere

We want to use OAuth 2.0 framework flows to log in over SSH

· How can we avoid running a browser on the server side?

Wait, this is a familiar issue, right?

Captive portals at public Wi-Fi access points

 how to login as a network-bound user if a Wi-Fi access point wants to show a browser window to 'click the checkbox' before the login?

Passwordless authentication

how can we help to improve Linux login experience?

How to run untrusted code prior to login?

Using OAuth 2.0 device authorization grant flow

Actual flow for FreeIPA

Actual flow for FreeIPA

Detailed guides

- FreeIPA workshop: chapter 12: Authentication against external Identity Providers
- FreeIPA design documents: general design and IPA API design for IdP

Actual flow for FreeIPA

FreeIPA client code is scoped in the MIT Kerberos pre-authentication module

- provided by SSSD project as sssd-idp subpackage
- tells KDC "I support OAuth 2.0 method, consider it"
- shows KDC response as "Authenticate at https://... and press ENTER."

FreeIPA server side is reusing RADIUS helper ipa-otpd

- KDC side of the MIT Kerberos pre-authentication module triggers IdP support
- KDC asks RADIUS helper ipa-otpd to handle it
- ipa-otpd calls SSSD-provided oidc_child helper to talk OAuth 2.0 to user-specific IdP
- on successful authorization response from IdP, KDC issues a Kerberos ticket

User runs browser elsewhere

Kerberos ticket is issued for the user

Possible integration

Authentication is done by an external IdP

Authorization grant is turned into a Kerberos ticket by FreelPA KDC

Kerberos authentication indicator "idp" is assigned to the ticket

Kerberos ticket is consumed by an IPA-enrolled application

- application can check the authentication indicator and deny non-IdP access
 - pam_sss_gss PAM module can be used to limit sudo access
 - mod_auth_gssapi Apache module can be used to limit authentication to web sites

OAuth 2.0 device authorization grant flow

Tested against multiple public IdPs

- Keycloak / Red Hat Single Sign-On
- Google
- · Github
- Microsoft Azure
- Okta

Does not work against IdPs which do not implement OAuth 2.0 device authorization grant

- Ipsilon (Fedora Accounts)
- Gitlab

A generic backend dream

System for cross-domain identity management (SCIM v2.0)

- RFCs 7642 / 7643 / 7644
- Automation of the user identity information exchange between identity domains
- Supported by many proprietary identity providers
- Exposes user and group information and access methods over REST API (over HTTPS)

SCIMv2 PoC

ipa-tuura - a proof of concept SCIMv2 bridge between FreeIPA and IdPs

• tuura – Finnish word for an ice chisel, a tool for breaking ice

Current scope

- Supports FreeIPA, LDAP, and Active Directory as read sources
- Supports FreeIPA, LDAP, and Active Directory as writable targets
- Rudimentary password authentication support

SCIMv2 PoC

PoC code:

- Django application combining IPA API and a SCIMv2 Python module: freeipa/ipa-tuura
- Keycloak user store plugin to connect over SCIMv2: justin-stephenson/scim-keycloak-user-storage-spi

A transparent bridge between FreeIPA and OAuth 2.0 IdPs

IPA-enrolled applications to benefit from OAuth 2.0 client support

- e.g. Cockpit UI on each server to accept OAuth 2.0 authentication of IPA users
- FreeIPA Web UI integration

Secure transition from OAuth 2.0 grant to Kerberos on behalf of a user

WebAuthn / FIDO2 support

OAuth 2.0 IdPs already have support for WebAuth tokens

• FreeIPA 4.9.10+ can authenticate users with WebAuthn tokens through external IdP integration

SSSD plans to support FIDO2 tokens natively

- · Locally, with libfido2 first, to replace pam_u2f
- Over Kerberos for integration with FreelPA

Integrate with GNOME login

Enable passwordless FreeIPA deployments

SCIMv2 support

Turn PoC project freeipa/ipa-tuura into a production code

- Automate integration with known SCIMv2 providers
- Support more IdPs
- · Add more authentication methods
- •

